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The zero-temperature phase diagram is rigorously obtained for a two-dimen- 
sional lattice model with four energy parameters. It is shown that the parameter 
space can be divided into regions, together with their boundaries, such that in 
each region the ground-state configurations are of one of seven different types. 
These types include one which is nondegenerate, four which are doubly 
degenerate, one which is infinitely degenerate but with no residual entropy, and 
one which is infinitely degenerate and has a nonzero residual entropy. The 
Pirogov-Sinai extension of the Peierls argument is used to establish the exist- 
ence at low temperatures of four different types of ordered surface-reconstructed 
phases. 

KEY W O R D S :  Surface reconstruction; phase transitions. 

1. I N T R O D U C T I O N  

In the present paper we calculate the zero-temperature phase diagram and 
prove the existence of four different types of ordered surface-reconstructed 
phases in a lattice model for surface reconstruction. 

The model surface consists of a rectangular lattice with periodic 
boundaries which has an a tom associated with each of its (2N) 2 lattice sites 
(see Fig. 1). An atom associated with a lattice site may be situated either 
in a position on the lattice site or displaced to a position a distance A to 
the left or right of the lattice site. ~1'2) An extra energy e R is associated with 
an a tom which is at a position to the left or right of its associated lattice 
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Fig. 1. The configuration in which all of the atoms, here depicted as black disks, reside on 
their associated lattice sites. In other configurations, atoms may be displaced either left or 
right of their lattice sites to one of the two neighboring positions marked by an X. The 
rectangle r is used to aid in the determination of the ground states and the ordered phases 
present in the model. 

site. If a pair of atoms associated with neighboring lattice sites on the same 
horizontal row of sites are displaced toward one another, they interact with 
an energy e A. If a pair of atoms associated with neighboring lattice sites on 
the same vertical row of sites are displaced in opposite directions, they 
interact with an energy ~ss; and if one is displaced and the other remains 
on its associated lattice site, the pair of atoms interact with an energy es. 

The model has been previously studied using a Monte Carlo tech- 
nique for the case in which ess and ~s are repulsive interactions; i.e., ess > 0 
and es > 0. ~t'2) In this case, vertical rows of atoms energetically favor either 
all being on their lattice sites or all being displaced in the same direction, 
left or right of their lattice sites. Two types of ordered reconstructed phases 
were obtained for this case of the interaction parameters. 

In Section 2 we rigorously obtain the zero-temperature phase diagram 
for the model for almost all possible values of the four energy parameters. 
We show that the parameter space can be divided into regions such that 
in each region the ground-state configurations are of one of seven different 
types, including one type which is nondegenerate, four which are doubly 
degenerate, and two which are infinitely degenerate. Of the two types of 
infinitely degenerate ground states, one has a nonzero residual entropy and 
one does not. We also discuss the nature of the ground states which occur 
on the boundaries between the regions. In Section 3 the Pirogov-Sinai 
theory (3) is used to prove the existence at sufficiently low temperatures of 
four different types of ordered surface-reconstructed phases in the model. 
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2. T H E  Z E R O - T E M P E R A T U R E  P H A S E  D I A G R A M  

The calculation of the phase diagram at zero temperature consists of 
a specification of the ground states of the model in the various regions and 
on the boundaries between regions in the space of the four interaction 
parameters eR, eA, eSS, and ~s. 

The Hamiltonian of a configuration ~ of atoms in the model can be 
written as 

/ 4 ( {n  })  = + + + (1) 

where ni is the number of interactions with energy e i which occur in the 
configuration, and where {n} = (n,~, hA,  n s s  , rls). 

To each rectangle r =  1,..., (2N) 2 of the type pictured in Fig. 1, we 
assign a restricted Hamiltonian Hr defined as follows. An as yet undeter- 
mined real number x is assigned to each of the n; atoms which are at the 
corners of r, a value e R / 2 - x  to each of the n~ atoms which are displaced 
from the lattice sites at the middle of the horizontal edges of r, a value eA/4 
to each of the n~ pairs of atoms which interact with an energy e A along the 
edges of r, and a value ess (or es) if the pair of atoms associated with the 
sites at the middle of the horizontal edges of r interact with an energy ess 
(or Ss). The restricted Hamiltonian can then be written as 

where 

H,.({nr})=n~sR/2+#AeA/4+nrssess+n~ses+(n~o--nrn)x (2) 

{ n r }  -~ { . . . .  17; ) n R,  flA~ FISS~ 11 S,  

The sum of the restricted Hamiltonians of all the 
rectangles r in a configuration ~ which has {n} yields 

(3) 

(overlapping) 

H({n}) = Z H~({#}) (4) 
r 

The sum in Eq. (4) is independent of the parameter x, for each atom which 
is displaced from its associated lattice site in ~ is counted with the value x 
with two rectangles and with the value - x  with two other rectangles. 

The adjustable parameter x was introduced to aid in the determina- 
tion of the ground-state configurations. In particular, if there exists a 
configuration ~ and a value of x such that the restricted Hamiltonian for 
every rectangle r in ~ has the value H ~ of the restricted Hamiltonian, and 
if H ~ satisfies 

H ~ = rain Hr({n r } ) (5) 
{n r } 
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in a region (or a boundary between regions) D of the space of parameters 
eR, ~A, ess, and es, then ~ is a ground-state configuration in D, and the 
restricted Hamiltonian is said to constitute an "m-potential. ''(4) Moreover, 
every ground-state configuration in D is composed entirely of rectangles 
which have the value H ~ 

We first seek ground-state configurations in which every rectangle r 
has the same type of restricted configuration ~r. Such restricted configura- 
tions necessarily have n; = n~, and thus have a restricted Hamiltonian H ~ 
which is independent of x. The set of inequalities 

H ~  min Hr({nr(~r*)}) (6) 
~*~r 

is used to determine the region D and the range of values of the parameter 
x such that the restricted Hamiltonians for restricted configurations other 
than type ~r are all strictly larger than H ~ This ensures that every ground- 
state configuration in D is composed entirely of restricted configurations of 
type ~r. 

Configurations in which every rectangle r has the same type of 
restricted configuration account for six different types of ground-state con- 
figurations which occur in regions of the parameter space. The other type 
of ground-state configuration present in a region is obtained by setting 
x = 0 and determining a region D in which a small number of restricted 
configurations have minimal values of the restricted Hamiltonian [see 
Eq. (5)]. Since H( {n }) is independent of x, and since configurations can be 
constructed entirely from these restricted configurations with minimal 
restricted Hamiltonian, then all ground-state configurations in D are com- 
posed entirely of these types of restricted configurations. 

We shall now describe each of the seven types of ground-state con- 
figurations which occur in regions of the parameter space. For each type 
we shall define the region which corresponds to ground states of that type. 
We shall not, however, explicitly give the range of values of x which can 
be used to prove which configurations are ground states in a particular 
region of parameter space. These ranges of x are easily calculated using 
Eq. (6). 

The unique "nonreconstructed" (NR) configuration which has 
{n r } = (0, 0, 0, 0, 0) is the ground state in the region 

eR > max{0, - e f t 2 }  - min{0, 2~s, ess} (7) 

The NR configuration is illustrated in Fig. 1. The doubly degenerate 
"homogeneous paired reconstructed" (HPR) configurations having 
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{n r} = (2, 2, 0, 0, 2) are the ground states in the region defined by the 
inequalities 

~ss > O, e A < 0 
(8) 

gR "F eA/2 < rain{0, 2es} 

An HPR configuration is illustrated in Fig. 2. The doubly degenerate 
"homogeneous unpaired reconstructed" (HUR) configurations having 
{n r} = (2, 0, 0, 0, 2) are the ground states in the region 

ess  > O, ~A > 0 

~R < rain{0, 2es}  (9) 

An HUR configuration is illustrated in Fig. 2. For the case 0 <  
min{ess, 2es}, the three types of configurations NR, HPR, and HUR are 
the only ground states which occur in regions of the zero-temperature 
phase diagram. ~1'2/This phase diagram is illustrated in Fig. 3a. 

One of the doubly degenerate "zigzag paired reconstructed" (ZPR) 
configurations with {nr}=(2,2,  1,0,2) is illustrated in Fig. 2. ZPR 
configurations are the ground states in the region 

~ss < O, e A < 0 
(10) 

~R + eA/2 + ess  < rain{0, 2~ s - ~ss}  

The doubly degenerate "zigzag unpaired reconstructed" (ZUR) configura- 
tions, having {n r} = (2, 0, 1, 0, 2), are the ground-state configurations in 
the region defined by the inequalities 

ess  < O, e A > 0 

eR + ess  < rain {0, 2es - e ss  } (l 1 ) 

o 0 0 =  o O 0 o  o 0  * 0  ~  oO 

o 0 0 o  ~  ~  o 0  * 0  ~  

- 0  O* * 0  �9 �9 ~ 0  * 0  ~ 0  * 0  

JO O* = 0 0 o  oO - 0  ~ 0  oO 

~  O~ ~  ~  oO o 0  ~  

�9 �9 - 0  O-  oO O* Oe O* �9 �9 

�9 0 O* * 0 0 o  * 0  * 0  * 0  * 0  

O* * � 9  � 9  . 0  O ,  O* O .  Oo 

Fig. 2. Doubly degenerate ground-state configurations. 
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Fig. 3. Phase diagrams for the cases (a) 0 < m i n { e s s ,  2es} and (b) ess<min{O, 2es}. 

A ZUR configuration is illustrated in Fig. 2. For the case ~ss< 
rain{0, 2es}, the NR, ZPR, and ZUR configurations are the only ground 
states which occur in regions of the zero-temperature phase diagram, which 
is illustrated in Fig. 3b. 

Both of the two remaining types of ground-state configurations which 
occur in regions are infinitely degenerate. Configurations of one of these 
types, called "disordered paired reconstructed" (DPR) configurations, are 
composed entirely of rectangles with the single restricted configuration 
specified by {nr}=(1, 1,0, 1, 1). One such restricted configuration is 
illustrated in Fig. 4. The DPR configurations are the ground states in the 
region defined by the inequalities 

eA <0, 2eS< --leR+ea/2t 

eR + ca~2 + ess > 2es--ess 
(12) 

The number of DPR configurations can be counted as follows. If alternate 
atoms on a vertical row are displaced from their lattice sites (not all in the 

D P R  D U R  

Fig. 4. The types of restricted configurations which occur on every rectangle r in each of the 
infinitely degenerate ground-state configurations of type DPR or DUR. The small dots repre- 
sent lattice sites, the black disks represent atoms, and the white disks represent positions 
which can be either vacant or occupied by atoms. The restricted configurations are of a single 
type in the D P R  ground states, and the restricted configurations can be any one of six types 
in the D U R  ground states. 
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same direction), and the other atoms on the row remain on their lattice 
sites, the DPR configuration is completely specified by the configuration on 
this single vertical row. If the alternate atoms on this vertical row are all 
displaced in the same direction, the possible DPR configurations are com- 
posed of pairs of vertical rows of paired atoms, with two configurations 
possible for each such pair of vertical rows of atoms. Hence, for a lattice 
with 2N vertical and 2N horizontal rows of atoms, there are 4(2 N -  1) 
DPR configurations. Thus the DPR ground states, although infinitely 
degenerate, have no residual entropy. 

The infinitely degenerate ground-state configurations of the other type, 
called "disordered unpaired reconstructed" (DUR) configurations, are 
composed entirely of rectangles with configurations having one of the 
specifications {nr}=(1 ,0 ,0 ,  1, n;), where n ; = 0 ,  1, or 2. These types of 
restricted configurations are illustrated in Fig. 4. The DUR configurations 
are the ground states in the region defined by 

eA>0, 2eS< --jeRt 
(13) 

eR + ess  > 2es - Ess 

Without counting all of the DUR configurations, it is easy to see that they 
are infinitely degenerate and have a nonzero residual entropy. For example, 
there are 2 .2  2x2 DUR configurations in which alternate atoms on every 
vertical and every horizontal row are all displaced from their lattice sites, 
the other half of the 4N 2 atoms remaining on their associated lattice sites. 

From Eqs. (12) and (13) it follows that the two types of infinitely 
degenerate ground states, DPR and DUR, occur in regions of parameter 
space only for the case 2 e s < m i n { O ,  ess} .  The zero-temperature phase 
diagram for this case is illustrated in Fig. 5. 

We now briefly discuss the ground states on the boundaries between 
the various regions in Figs. 3 and 5 and for the values of the parameters 
not explicitly considered in Figs. 3 and 5. 

Using Eq. (5), one can show that the boundary in Fig. 3b between the 
regions with ground states of types NR and ZPR has a triply degenerate 
ground state which consists of the single NR configuration and the two 
ZPR configurations. All of the other boundaries between regions in Figs. 3 
and 5 have infinitely degenerate ground-state configurations. 

The special cases in which two of 0, 2Es, and ess  are equal to each 
other and less than the third were not explicitly considered in Figs. 3 and 
5. Although not stated, the ground states for the special case 2e s = 0 < ess 
are correctly given both in Fig. 3a and in Figs. 5a and 5b, and the ground 
states for the special case 2e s = ess  < 0 are correctly given both in Fig. 3b 
and in Figs. 5c and 5d. The ground state for the special case ess = 0 <<, 2es 
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Fig. 5. 
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Phase diagrams for the case 2es<min{O,~ss } and (a) ~ss>O, eA>O; (b) ess>O, 
~A<0;  (c) ess<O,~A>O; (d) e s s < 0 , ~ A < 0 .  

is the nondegenerate NR configuration in the region given by Eq. (7) and 
can be shown to be infinitely degenerate otherwise. (The case e s  = e s s  = O, 

like the case eA = 0, (2) corresponds to a one-dimensional system which has 
no phase transition.) 

In Section 3 the Pirogov-Sinai extension (3) of the Peierls argument (s) 
is used to prove that ordered surface-reconstructed phases similar in struc- 
ture to the four" types of doubly degenerate ground-state configurations 
pictured in Fig. 2 exist in the model at sufficiently low temperatures. 

3. EXISTENCE OF ORDERED PHASES AT 
FINITE T E M P E R A T U R E S  

As demonstrated in Section 2, the ground-state configurations for the 
model are doubly degenerate in each of the four regions defined by 
Eqs. (8)-(11) in the space of the interaction parameters aR, cA, e s s ,  and es. 
These four types of ground-state configurations, HPR, HUR, ZPR, and 
ZUR, are pictured in Fig. 2. In each of these four regions of parameter 
space, the doubly degenerate ground-state configurations are composed 
entirely of rectangles r having a single type of restricted configuration ~r 
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which has a value H ~ of the restricted Hamiltonian. For a range of values 
of the adjustable parameter x, H ~ satisfies Eq. (6); i.e., it is less than the 
restricted Hamiltonian for any other restricted configuration. 

Since the restricted Hamiltonian is a finite-ranged m-potential (4) (see 
Section 2), and since the ground states are finitely degenerate in the regions 
defined by Eqs. (8)-(11), then Holsztynski and Slawny (6) have shown that 
the Pirogov-Sinai (3) extension of the Peierls argument (5) is sufficient to 
prove the existence of multiple equilibrium states at sufficiently low tem- 
peratures in each of these regions of the space of interaction parameters. 
Since the interactions in the model are finite-ranged, the equilibrium state 
is unique at high temperatures. (7~ Consequently, a phase transition occurs 
at finite temperature in each of the regions of parameter space defined by 
Eqs. (8)-(11). (8~ 

These multiple equilibrium states which exist at low temperatures 
correspond to ordered surface-reconstructed phases which are small pertur- 
bations of the ground states in each of the four regions of parameter space 
defined by Eqs. (8)-(11). Since series expansion techniques can be used to 
show that the system is disordered at high temperatures, then the phase 
transitions which occur are presumably order~tisorder transitions. 

In addition, since the nonreconstructed (NR) configuration pictured in 
Fig. 1 is the unique ground-state configuration in the region of parameter 
space given by Eq. (7), and since the restricted Hamiltonian is an m-poten- 
tial in this region, then the Pirogov-Sinai theory (3'6) proves the existence in 
this region of parameter space of a low-temperature phase in which nearly 
all of the atoms reside on their associated lattice sites. 

In the regions of parameter space given by Eqs. (12) and (13), the 
ground-state configurations are, respectively, the infinitely degenerate DPR 
and DUR configurations. We have not determined the nature of the low- 
temperature phases which occur in these two regions of parameter space. 
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